

Viking Chess Using MCTS
Final Report

Declan Murphy – C00106936
Supervisor: Joseph Kehoe

2016

Viking Chess Using MCTS Final Report

1

Contents
1. Introduction ... 2

2. Project Description ... 2

2.1. Application Description .. 2

2.2. UI/UX Description ... 3

2.2.1. Introduction .. 3

2.3.2. Screens ... 4

3. Specification Conformance ... 6

4. Learning Outcomes .. 7

4.1. Personal ... 7

4.2. Technical.. 7

5. Project Review .. 8

5.1. Introduction .. 8

5.2. Achievements .. 8

5.3. Challenges .. 8

5.4. Dropped Features .. 10

5.5. Recommendations .. 11

5.5.1. Document Early and Sufficiently .. 11

5.5.2. Be Wary of Feature-Creep .. 11

5.5.3. Just Because They Look Alike Doesn’t Mean They Are ... 11

5.5.4. Time Management is Everything ... 12

5.5.5. Don’t Stress the Little Things ... 12

6. Final Remarks... 13

6.1. What Would a Redo Look Like? .. 13

6.2. Did You Choose the Right Technologies? ... 13

6.3. What Were The Implications of Your Chosen Technologies? ... 13

7. Acknowledgements ... 14

Viking Chess Using MCTS Final Report

2

1. Introduction
This is the final project report for the Viking Chess Using MCTS project developed as part of

the 4th year BSc.(Hons) in Software Development at IT Carlow.

This document details the development of the Viking Chess game, the game itself, the challenges

faced throughout development, the learning outcomes from the project and a review concerning

the development and game.

2. Project Description

2.1. Application Description
The Viking Chess game is an open source Windows 10 game that recreates the ancient Tafl

games played by the Vikings and the people they conquered. The game implements the Monte

Carlo Tree Search algorithm to create a competent AI player. Development of the game began in

October 2015 and concluded in April 2016.

The game contains five different variations of Tafl. These are:

 Hnefatafl – The Norse Variant. This is one of the most popular variants and it is believed

that it is this variant that the other variants are derived from. Hnefatafl is played on an

11x11 board with 24 Attackers vs 12 Defenders and a King.

 Brandubh – The Irish Variant. This variant is played with the smallest amount of pieces

with 8 Attackers vs 4 Defenders and a King on an 7x7 board.

 Ard Rí – The Scottish Variant. Like Brandubh, Ard Rí is played on a 7x7 board but uses

twice as many pieces.

 Tablut – The Sami Tribe Variant. This variant of the game was still being actively played

by the Sami People of Scandinavia in the 19th Century. It is played on a 9x9 board with

16 Attackers vs 8 Defenders.

 TawlBwrdd – The Welsh Variant. This variant is very similar to Hnefatafl in that it has

the same number of pieces and is played on an 11x11 board with just a slightly different

layout of pieces.

In addition to a choice between what variant to play, players have the choice to play against

another human locally on the same machine or against the CPU which uses the MCTS

algorithm.

As the game is not widely known about, the decision was taken to add a tutorial detailing how to

play the game. To keep code to a minimum, the decision was taken to create a single page for

this tutorial using buttons to activate different animations and text showing and detailing the rule

specified.

Viking Chess Using MCTS Final Report

3

2.2. UI/UX Description

2.2.1. Introduction
As with any game, the User Interface (UI) and User Experience (UX) had to be given careful

consideration. It was important for me to create a UI that players would associate with Vikings.

Also, since Tafl is a board game, the UI and UX would have to be simple to understand and

straight-forward to use.

When designing the UI theme, I tried out a number of different concepts before settling on a

final design. Once I had settled on the design, I detailed the elements of the design into a single

image to use as a reference when creating the UI elements, as can be seen below.

All images used in the application were created by myself.

Fig 1 - Theme Details

Viking Chess Using MCTS Final Report

4

2.3.2. Screens
The following is a description of all screens and their purpose present in the game.

2.3.2.1. Main Menu

The main menu is the entry point of the game.

Fig 2 - Main Menu Page

2.3.2.2. Settings Page

The Settings Page contains the configurable options for a new game of Tafl and forwards the

player onto their chosen variant.

Fig 3 - Settings Page

Viking Chess Using MCTS Final Report

5

2.3.2.3. Game Page

The Game Page is where a game of Tafl is played out. In the centre of the screen, the board and

pieces of the chosen variant are displayed and interacted with. At either side of the board is a list

of the previous moves made by each player and a turn timer for each player. Below the board lies

the total board timer and above the board, relevant notifications about the game inform the user

of various statuses such as the CPU making a move or the King piece being in a Check position.

Fig 4 - Game Page

2.3.2.4. Rules Page

The rules page contains information about how to play the game. Each button on the left-hand

side of the screen activates an animation that plays in the upper-right corner and a text

description of the rule which itself may be animated if more information is required to be

delivered.

Fig 5 - Rules Page

Viking Chess Using MCTS Final Report

6

2.3.2.5. About Page

The About Page displays information on the game and its development.

Fig 6 - About Page

3. Specification Conformance

“Good design adds value faster than it adds cost.”

-Thomas C. Gale

It is difficult to gauge how well this project stuck to the initial specification. In many ways, the

project stayed on track and the initial design and development synchronised well. However, with

the relatively short development lifecycle, I sometimes felt it was necessary to forge ahead with

coding a solution before any clear specification was drawn up for the problem of the time. This

compounded the conformance drift since once I had coded a solution to a problem, I found

myself resistant to changing it and instead opted for updating the specification to match.

In retrospect, greater attention should have been paid early on to properly documenting the

project before proceeding with coding solution. Doing so would have alleviated many problems

I encountered while coding and saved more time in the long run so that more features could

have been added.

Nevertheless, many specification details were transferred successfully. First and foremost, the UI

design changed very little from what was laid out in the functional specification. This allowed any

UI development to move along at a quick and constant pace. Additionally, the use cases I

designed were sufficient for guiding me through coding. Finally, the development of the MCTS

algorithm was, for the most part, true to design with changes made to the design arising as a

result of unforeseen complexities in tailoring the algorithm towards the game’s domain space.

Viking Chess Using MCTS Final Report

7

4. Learning Outcomes

4.1. Personal
To say that this project was eye-opening would be an understatement. Having never before

dedicated so much time and effort into a single software project, I found the experience to be

one of constant learning. By that I mean the project was challenging, frustrating, rewarding, and

educational; in equal measure and often simultaneously.

The project challenged me in many ways. It forced me into adopting better time management

skills than I had when I started. It humbled me when I believed myself to have found a solution

only to discover my gung-ho attitude to coding led me to overlook an obvious oversight.

I found myself frustrated on many occasions as I fought through a lack of a proper testing

framework and debugged the program at a snail’s pace and reinforced in me the benefits of test-
driven development and the importance of suffice documentation.

Throughout the development of the game, I was rewarded for taking the time to learn about the

MCTS algorithm and the domain space. It led me to considering ways to play the game that I

would have to consider in my evaluation function and allowed me to create a relatively code-light

algorithm from spec.

In all these ways and more, the project was educational. Developing the game as a one-man team

over the course of six months revealed to me the challenges that small developers face can seem

overwhelming but not insurmountable. In essence, it thought me that with the right tools (good

documentation and testing), the necessary skills (coding), and a bit of hard work, a project that at

first appears difficult can soon be overcome.

4.2. Technical
In my 4 years doing this course, I have been introduced to a number of different languages.

Many of these were cursory delves into the little differences and intricacies of one language

versus another. I have never felt that I could say I could competently develop an application in a

language other than Java. Until now. Though C# shares much with Java, there was also a lot of

learning to do along the way and at the end of this project, I now feel confident in being able to

say I can take advantage of the C# language.

Similarly, I have never before developed a Windows application to any real extent yet with this

project, I not only got to learn how the .Net framework operates under the hood but as I was

developing for the relatively new Universal Windows Platform (UWP), I gained valuable

knowledge in developing applications for the Windows 10 family of devices and discovered the

ease-of-use that XAML provides in creating a good and responsive UI.

Designing and coding Viking Chess and the MCTS algorithm also have me great insight into

creating board games with AI players. Though the rules of a game like Tafl are a bit simpler than

creating a complex AI for a complex video game, researching the MCTS algorithm and related

Viking Chess Using MCTS Final Report

8

algorithms such as Alpha-Beta Search, etc has allowed me to better understand how one would

go about creating a more advanced AI.

5. Project Review

5.1. Introduction
When I chose to select this project as my top choice, there were a number of motivators that led

to the decision. First and foremost, I want to direct the skills I have learned over the last four

years towards game development. Viking Chess provided me the perfect opportunity to get

experience and start building my portfolio for the future.

Secondly, the importance of artificial intelligence in today’s games cannot be understated. I felt
that it was important for me to gain first-hand knowledge and experience about AI in games and

finish this course with the ability to implement decent AI in future projects.

Finally, before choosing Viking Chess as my project, I had never heard of the board game. This

project drew parallels with my personal interest in the ancient history of Northern Europe and

delving into the history of Viking Chess as a game was a personally rewarding experience.

5.2. Achievements
Overall, I am happy with the final outcome of the project. Implementing the MCTS algorithm

for Viking Chess was difficult but in the end, I am relatively happy with how the algorithm

turned out. Creating a board game from beginning to end was a first and although I faced many

hurdles throughout development, I’m glad that I was able to implement a working version of the
game.

I am also very proud of how the user interface turned out. Initially, I threw together a basic UI

that served the purpose of visualising the game during initial playtests. Very early into playtesting

however, I realised that the interface was, for lack of a better term, ugly. Many elements blended

together due the monotone nature of the colours along with low resolution images. The result

was a UI that was both difficult to read and unappealing. I believe spending the time to think

about the UI design and create high resolution images paid off in creating a clear and attractive

UI that evokes the spirit of Viking life.

In addition to spending time on the user interface, I also created a handful of sounds that play

when a player presses a button, selects a piece, moves a piece and captures a piece. With more

time, I would have liked to have created a full suite of sounds and music. As it stands however,

the experience of playing the folly artist for my own game proved to be an enjoyable experience

in terms of finding the right objects to use (Luckily, I had a nice bamboo chessboard and pieces

lying around) and editing the recorded audio afterwards to reduce noise and improve the sound

quality.

5.3. Challenges
The project presented many challenges over the course of development. Thankfully, I was able

to overcome most of them and when the result was less than I had expected, I did my best to

mitigate the problems.

Viking Chess Using MCTS Final Report

9

5.3.1. Performance

When starting the project, the greatest challenge was deciding how to design the board game.

There are many established methods for creating games such as Chess but I felt some of these

would be ill-suited to the multiple boards and layouts of Tafl. In the end, I decided on a purely

object-oriented approach. However, once I settled on this design and coding began and

progressed, it became harder and harder to change the design. Initially, I was happy with the

object-oriented approach. Then as I began developing and testing the MCTS algorithm, I

became more concerned with the performance overhead from creating the multiple objects

required by the algorithm.

These concerns showed themselves to be well justified when I began playtesting the MCTS

algorithm. The time complexity of the MCTS algorithm can grow exponentially. The reason for

this is simple: The greater the number of playouts performed by the MCTS algorithm, the greater

the number of nodes created. With each node created, performing the four steps of the

algorithm takes longer to complete. With an object-oriented approach, the performance impact

of processing the playouts is high as each object takes a relatively high amount of time and

memory to create when compared to basic data types. To control this performance impact, the

number of playouts performed was limited to 1000. This keeps the time it takes for the CPU

player to make a move relatively low, although the time it takes is also dependent on the state of

the current board and the variant being played. The following table shows a quick run-down of

the average first-move turn time for the CPU player in each variant:

Variant Time

Ard Rí (7x7) 19s

Brandubh (7x7) 18s

Hnefatafl (11x11) 2m41s

Tablut (9x9) 1m8s

Tawlbwrdd (11x11) 2m35s
Fig 7 – MCTS Time to Completion Table

As you can see, the larger boards with more pieces and thus more possible moves take quite a bit

longer to process through the playouts than the smaller boards. One solution to this problem

might have been to decrease the number of playouts depending on the variant being played.

However, as the number of playouts is strongly tied to the strength of the move the MCTS

algorithm makes, it was decided to keep the number of playouts the same across the board with

the number chosen to attempt to balance the time it takes against the quality of the move.

5.3.2. The Evaluation Function

Aside from the performance challenges, the greatest difficulty was in implementing a good

evaluation function for the MCTS algorithm. The purpose of the evaluation function is to score

the state of a board at the end of the simulation phase. If the board is in a terminal state (i.e. The

game has been won by a simulated player) then scoring is straight-forward and the score

returned is predetermined by a constant which is positive or negative depending on if the win is

in the CPU player’s favour.

Viking Chess Using MCTS Final Report

10

Scoring boards that conclude in the mid-game is more difficult however. At first, I had

considered just counting the number of pieces each side had remaining and scoring the board

accordingly. However, this proved insufficient at providing an accurate reflection of the state of

the board. That being said, it did prove to be a good starting point. I then reflected on the

problem some more and realised that controlling the ranks and files of the board are important.

In other words, pieces on the outside ranks and files are worth more than pieces on the inner

ranks and files. This is because the closer a piece is to the edge of the board, the easier it would

be for the piece to block the King from moving to the edge or prevent a block from occurring in

the first place.

So all together, my evaluation function scores based on Win/Loss, Piece Count and Board

Control. I believe this is sufficient enough given the time I had to complete the project.

However, with more time, I would have liked to put more effort into considering more ways of

scoring the mid-game and improve my evaluation function. As it stands, it makes relatively smart

moves but falls apart against a player familiar with the game as it cannot evaluate the board to

the degree that the player can.

5.4. Dropped Features
There are a number of features I had hoped to include in the final design that I either never got

around to implementing or dropped for a specific reason. If I wanted to, this list could be

endless and given an infinite amount of time and passion, the feature-creep would be endless.

However, here are a few of the features I most deeply considered that never appeared in the final

version:

 Rule Modifications, including:

o Corner Escape: King must reach a corner to escape

o King Captured by Two Pieces: King is captured in the same way as all other pieces

o Dice Rolls determine moves made: The roll of a die determines the number of moves a

piece can make in a given turn. This is a rule speculated to have existed in

Brandubh when it was first created and may have existed in other variants as well.

 Difficulty Slider – This was removed when I determined that increasing the strength of

the MCTS algorithm by increasing the playout count would exponentially increase the

time it takes for the CPU player to make a move. Instead, I chose a static number for the

reasons discussed in the previous section (5.3. Challenges).

 CPU vs CPU – This would have been relatively straight-forward to implement given a

little more time. However, as the final deadline loomed, I decided that it would be an

aside to the main game and chose to drop it as a feature. That being said, I would be

interested to see how the computer performs against itself using the MCTS algorithm,

possibly with different playouts for each CPU.

 Multiple Device and Resolution support – As I had chosen to develop a UWP

application, I had hoped to support multiple devices and resolutions. However, as this

was my first foray in UWP development and XAML, I found it difficult to implement

the UI scaling necessary to support them. As time dwindled, I decided to drop this

feature in favour of focusing more on the underlying code.

 Full Audio Suite – I had planned to include additional sounds and music such as

background music and noise, etc but ran out of time.

Viking Chess Using MCTS Final Report

11

 Online Play – This was always a long-stretch goal but if time had allowed, I would have

liked to explore the option of playing a peer-2-peer game over the internet.

5.5. Recommendations
As I reach the conclusion of this report – and as a consequence, this project – there are a

number of recommendations I would like to make to anyone else attempting a project in the

same vein as Viking Chess.

5.5.1. Document Early and Sufficiently
Although the bohemian soul in me fights against the idea of heavy planning, it is difficult to

argue against its benefits, especially in the case of a large project such as this. My first piece of

advice to anyone willing to listen is to spend the time to plan ahead and document that plan is as

much detail as possible. As the project progresses, that initial documentation may become

outdated and it may even turn out to be entirely wrong. Yet with that documentation, there’s a
very likely chance that spending an hour detailing a use case and creating a sequence diagram will

save at least two hours later down the line coding.

5.5.2. Be Wary of Feature-Creep
One thing that I had to fight hard against over the course of development was my own active

imagination. I could have included different board styles and different pieces. I could have tried

out multiple variations of the MCTS algorithm. I could have included every Tafl variant ever

mentioned. I could have continued on and on adding new features indefinitely.

Had I done so, the end result would have likely felt bloated; each disparate component less than

what it should have been. Instead, I focused my energies on the main goal – implement the

MCTS algorithm and the underlying game. Sure, there were times when I let my flights of fancy

take me and looking back upon those occasions, I see that they were as much an escape from the

current problem I was facing in development as it was about adding the feature I just thought of.

In a way, I believe this to be healthy. Stepping back from a challenge and moving onto

something new is a good way to find new vigour and return to the problem with a new approach

head-on. So long as the escape doesn’t become an extended departure.

5.5.3. Just Because They Look Alike Doesn’t Mean They Are
Very early on in development I found myself running into errors and exceptions that I just

couldn’t track down. I did (or thought I did) everything I could to solve these problems but to
no avail. Then the realization came to me – Copy Constructors.

Although present in Java, Copy Constructors are very important in C# when dealing with

objects. Where with Java, you might get away with just a shallow copy of an object, there is very

little chance that the same success will be found in C#.

This highlights an important lesson for anyone looking at a new language and thinking “That

looks familiar to [insert language here] which I know very well.” Do your research. Make sure

early on that you have a good working knowledge of a language before you embark on a big

project. Not doing so will only hold you back in the long run – and provide countless joyless

hours of debugging.

Viking Chess Using MCTS Final Report

12

5.5.4. Time Management is Everything
In spite of a starting base of poor documentation and hasty coding, effective time management

can turn a potential disaster into a potential exemplar.

Developing an application over the course of six months, all the while juggling other course

responsibilities and home life is no easy task. It requires dedication, self-control and good time-

management. At first, it seems like you have plenty of time to get the project done. Then the first

iteration and the first demo is due and you have to get things up to scratch and put your best

foot forward. Before you know it, the second iteration has passed you by and you’re on the
home stretch.

If you manage your time poorly, you are setting yourself up for failure. It’s as simple as that. Six
months is less time that you might imagine when you have a torrent of work and responsibilities

getting in the way of making progress. This is where Recommendation 5.5.1 pays dividends. Plan

correctly and you are already well on your way to managing your time more effectively.

5.5.5. Don’t Stress the Little Things
One of the big things that surprised me while developing the Viking Chess game was just how

easy it was to get something done when I got out of my way. There were so many times when I

would get bogged down in the minutia of a problem and could no longer see the wood from the

trees. I would then get frustrated and compound the problem when the solution didn’t magically
present itself after the well-practiced ritual of beard-stroking and head-scratching.

So my final piece of advice is this: Don’t worry about the details too much. In my experience from

working on this project, I have found time and time again that the problems that tend to niggle

the most resolve themselves as you work your way through the bigger picture. In the end, it is

when you put the stress and the worry aside when you get the most work done.

So relax, settle in and put the head down. It should all work out in the end.

Viking Chess Using MCTS Final Report

13

6. Final Remarks
In closing I would like to briefly go over some outstanding discussion that I did not get to or

which did not fit in the above sections.

6.1. What Would a Redo Look Like?
Had I the opportunity to start the project again from scratch, there are many things that I would

do differently. Some of these are small, others are quite major.

First and foremost, I would use the knowledge I gained from this project to document a more

complete model of the game. In doing so, I would consider from the outset the importance of

performance to the MCTS algorithm and step away from, as much as I could, an object-oriented

approach in favour of a more lightweight and stripped down representation. Zobrist Keys and

Lookup Tables (as recommended by my supervisor Joseph Kehoe) would be my first port of

call.

Next, I would create a concrete list of must-have features that is concise. I would plan each in

detail and add them to the game as soon as possible and I would include no additional feature

until I was sure everything else was to spec. I would also take greater care in developing a

responsive UI from the start rather than trying to shoehorn it in after the leg-work has been

done.

Finally, I would set aside as much time as possible to improving the evaluation function as I now

believe this to be the critical component in making an effective MCTS algorithm for Viking

Chess.

6.2. Did You Choose the Right Technologies?
The short answer: Yes, I believe so. The UI was always going to be a front and centre element of

Viking Chess. Developing a UWP application using C# and XAML all but removed the grunt-

work and difficulty that would have otherwise been involved in creating an attractive and

engaging user interface.

In addition, the use of C# as a core language allowed me to take advantage of the similarities

with Java to get a head start on development versus choosing a language I was less confident

about.

6.3. What Were The Implications of Your Chosen Technologies?
Honestly, there were very little implications to the choices I made. Although XAML was

completely new to me and there was a slight learning time before I felt confident developing

with it, I gained a good grasp of it with relative ease.

If I was to highlight any implication, it would probably be that choosing C# immediately put me

into an object-oriented mind-set which, as mentioned previously, became a source of

consternation in regards to performance.

Viking Chess Using MCTS Final Report

14

That being said, if I had the opportunity to choose new technologies for a redo, I would

probably still go with the same, if only for the speed and ease at which code can be generated

and UI’s built.

7. Acknowledgements
I’d like to thank my supervisor Joseph Kehoe for making me focus on getting the game working

before I worried too much about getting it working perfectly. I wish to thank him too for sitting

through my attempts at trying to find the right questions to ask and then given me the answers I

needed to hear.

I would also like to thank anyone who had to listen to me blather on about a board game they

had little interest in and pretending that they had. I would also like to thank my friends and

partner who play tested the game as much as I made them and given me honest, sometimes

scathing critique.

All of you kept me in line with my feet on the ground and aided me in accomplishing what is, to

date, my biggest software development project to date.

	1. Introduction
	2. Project Description
	2.1. Application Description
	2.2. UI/UX Description
	2.2.1. Introduction
	2.3.2. Screens
	2.3.2.1. Main Menu
	2.3.2.2. Settings Page
	2.3.2.3. Game Page
	2.3.2.4. Rules Page
	2.3.2.5. About Page

	3. Specification Conformance
	4. Learning Outcomes
	4.1. Personal
	4.2. Technical

	5. Project Review
	5.1. Introduction
	5.2. Achievements
	5.3. Challenges
	5.3.1. Performance
	5.3.2. The Evaluation Function

	5.4. Dropped Features
	5.5. Recommendations
	5.5.1. Document Early and Sufficiently
	5.5.2. Be Wary of Feature-Creep
	5.5.3. Just Because They Look Alike Doesn’t Mean They Are
	5.5.4. Time Management is Everything
	5.5.5. Don’t Stress the Little Things

	6. Final Remarks
	6.1. What Would a Redo Look Like?
	6.2. Did You Choose the Right Technologies?
	6.3. What Were The Implications of Your Chosen Technologies?

	7. Acknowledgements

